An Unsupervised Dynamic Image Segmentation using Fuzzy Hopfield Neural Network based Genetic Algorithm

نویسندگان

  • Amiya Halder
  • Soumajit Pramanik
چکیده

This paper proposes a Genetic Algorithm based segmentation method that can automatically segment gray-scale images. The proposed method mainly consists of spatial unsupervised grayscale image segmentation that divides an image into regions. The aim of this algorithm is to produce precise segmentation of images using intensity information along with neighborhood relationships. In this paper, Fuzzy Hopfield Neural Network (FHNN) clustering helps in generating the population of Genetic Algorithm which there by automatically segments the image. This technique is a powerful method for image segmentation and works for both single and multiple-feature data with spatial information. Validity index has been utilized for introducing a robust technique for finding the optimum number of components in an image. Experimental results shown that the algorithm generates good quality segmented image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Hopfield Neural Netwolrk for Medical Image Segmentation

In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentati...

متن کامل

The Application of Competitive Hopfield Neural Network to Medical Image Segmentation - Medical Imaging, IEEE Transactions on

In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as a problem of pixel clustering based upon the global information of the gray level distribution. ...

متن کامل

Comparison of Hopfield Neural Network and Fuzzy Clustering in Segmenting Sputum Color Images for Lung Cancer Diagnosis

The analysis of sputum taken from patients can be an extremely valuable technique for an early detection diagnosis of lung cancer. There is a great need for an automated system which can provide accurate analysis of the morphology of the sputum cells on a microscope slide, or diagnose their color digital image using special software. In this work, we compare two unsupervised segmentation method...

متن کامل

Image Segmentation with Fuzzy Clustering Based on Generalized Entropy

Aimed at fuzzy clustering based on the generalized entropy, an image segmentation algorithm by joining space information of image is presented in this paper. For solving the optimization problem with generalized entropy’s fuzzy clustering, both Hopfield neural network and multi-synapse neural network are used in order to obtain cluster centers and fuzzy membership degrees. In addition, to impro...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1205.6572  شماره 

صفحات  -

تاریخ انتشار 2012